
Albert Nijhof 26.06.2016

What's in a name?

(About 'data managers' in forth)

In texts that try to explain forth to non-forthers you find sometimes
triumphantly presented examples like this:

: 1 ." Hello! " ;

So flexible! It shows in fact a fundamental weakness in the forth interpreter.

T h e s i m p l e i n t e r p r e t e r

The forthinterpreter is very simple: it reads the following name in the input
stream ...

Wait! To be precise: in forth a "name" is a contiguous series of characters (ASCII
21-7E), bounded on both sides by spaces, line start or line end. There are, apart
from the space, (almost) no characters that receive a special treatment.

Again:

▶ The interpreter reads the next name from the input stream and tries to find
it in the dictionary.

Found? - execute or compile it, depending on STATE and IMMEDIATE.

Not found? - treat it as a number. If that does not work out: stop the proces
and report an error.

I understand that as follows:

▶ The interpreter reads the next name from the input stream, finds it in the
dictionary and executes or compiles it, depending on STATE and
IMMEDIATE. When the name is not found the interpreter has the generosity
to treat it as a number. When that does not work out an error is reported.

Of course that comes down to the same thing. The only difference is that my
version suggests that it should not be a task of the interpreter to process
numbers.

Actually very strange: the programmer knows that he types a number and yet
the interpreter will check if that number is a name - in vain, we may hope.

W h a t ' s i n a n a m e ?

This is the flaw: data is first treated as a name because the interpreter can not
read minds.

Ideally data in forth code should be unmistakably identifiable as data!

The task of the interpreter to recognize data in the input stream is expanding
and seems to become a main task. The interpreter has to check names on the
presence of special characters as in #10 &10 %10 "a "b" &a 3.E2
'a C: etc. in order to classify them as a number, double number, floating
point number, string, or whatever. The knowledge of those special characters
and their possible positions must be available in the interpreter. This is what we
call a Swiss army knife! Even special structures (recognizers) are proposed to
achieve this. If those structures are productive, i.e. expandable by the user, a
syntax is smuggled into names (see Visions Below).

It is unfortunate, but especially for small forths this is not attractive.

Names and data can be confused due to their appearance. This means that
choosing names for new definitions is restricted in an unpredictable way. You
better have to avoid names like A. 2, #3 V: BAD and that is at least a
remarkable limitation.

I n t e r m e z z o (V i s i o n s)

Modern forth Old-fashioned forth
------------ ---------------
:AMSTERDAM : amsterdam
\This is comment \ This is comment
CON:LONDON constant london
VAR:PARIS variable paris

Also very useful:

!PARIS paris !
@PARIS paris @
VAL:BERLIN value berlin
TOBERLIN to berlin

Extremely convenient:

,IF postpone if
,THEN postpone then

You do not have to limit yourself to two-part composites:

ON@STATE state @ if
@STATE=0 state @ 0=
ON@STATE=0 state @ 0= if
ON@PARIS=200 paris @ 200 = if

And to reduce that annoying postfix thing a little further:

+LONDON london +
*LONDON london *
-LONDON london -
+@PARIS paris @ +
-@PARIS paris @ -
+245 245 +
-245 ...

Hey, that's a pity. Maybe ...

-245 -245
--245 -245 -

...?

A s i m p l e r i n t e r p r e t e r

But seriously now: let's have a look at the very forth-fundamentalistic idea of
having an interpreter that does not accept any numbers:

: INTERPRET
 begin bl word find dup
 while 0< state @ and
 if compile, else execute then
 repeat
 0= abort" Name not found " ;

That's what I call a simple interpreter!
But what to do with data?
There is a simple and effective solution:

D a t a m a n a g e r s

"Data managers" are forth words that announce, read and interpret data in the
input stream. They are specialists. Each data type has its own own data
manager. A data type no longer needs to be detected.

Let's first create a word N that processes single numbers. Note that there is
always at least one space between data manager and data. Example:

HEX
: VISIBLE? (x -- flag)
 n 21 n 7F within ;

Before you drop out:
Of course I don't wish to argue that this N must be introduced in forth. I use it
here only as the simplest example to show you how all those other data types
could be handled.

E x a m p l e s o f d a t a m a n a g e r s

NN 100 10 \ 2 numbers
DN 100 \ double number
FL 100 \ floating point number
HX 100 \ hexadecimal number
DM 100 \ decimal number
BN 100 \ binairy number
CH C \ ASCII code of C
CTRL C \ control-C as a number
XT C@ \ token of C@
S "ccc" \ address/length of the string
CS "ccc" \ address of counted string

About the strings (slightly irrelevant in this context): remove the delimiter (the
quote) from S" and put it just in front of the string, the result is better
readable than with the classic S" where you have to think away that space.
Moreover, you can now choose your own delimiter (the first visible character
after S is the delimiter) for example for strings with quotation marks in it:

S "red wine" S -"green" wine- CS ' Ciao! '
S "red wine" S -"green" wine- CS ' Ciao! '

E f f e c t s

▶ Instead of forcing the interpreter to look up data in the dictionary (in vain)
and then to analyze it in order to decide what to do with it, the programmer
puts the correct data manager in front of the data.

▶ The data manager knows how to handle the data. The interpreter no longer
needs to detect data and its type. This increases readability, both for the
interpreter and for human beings. (At least in the long run, because DN 100
or FL 100 will be a bit of a shock for some people. Changing habits can be
hard.)

▶ The data manager forms a tandem with the data. That tandem behaves as a
whole and is state-smart, just as numbers are in an ordinary forth: depending
on STATE the data is compiled or put on the stack. See also "state-smart
phobia" below. The data manager itself is immediate and is never compiled.
Postponing a data manager is at your own risk.

▶ You can define data managers for any data type on top of each and every
forth. That's especially useful for small forths, they do not have to be prepared
for all kinds of data.

▶ A name in forth is a series of visible characters, none of which gets a special
treatment.

The problem with : 1 "Hello!" ; is removed, because now there is a
difference between the number 1 and the name 1.

S t a t e - s m a r t p h o b i a , C H a n d X T

[CHAR] and ['] have been included in the standard at the time. Data
managers are an alternative:

CH *
XT DROP

Use CH and XT when the data follows immediately,
use CHAR and ' when the data does not follow immediately.

These rules are easier and less esoteric than those for [CHAR] and ['].
And we did not yet talk about the graphic unattractiveness of these names,
with those square brackets.

I would like to put the state-smart phobia into perspective. Indeed, you can
invent state-smart constructions - with FOO, BAR and sufficient POSTPONEs or
EVALUATEs in it - to show that sometimes strange things can happen, but
nobody forces you to write that kind of programs.

P.S.

A forth interpreter should handle only single numbers. All other data require a
data manager.

